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Abstract

Pyroelectric detectors are very promising x-ray detectors for
intense pulsed x-ray/Y-ray measurements and can be used as x-ray
pyrometers. They are fast, passive, and inherently flat in spectral
response for Tow energy x-rays. We report our tests of L1Ta03.
Sr.sBa.sszo6 and L1Nb03 detectors at Nova Laser with 1 ns low
energy x-rays and at Zapp Z-pinch machine with 100 ns x-rays. The

temporal and spectral responses are discussed.

*Work performed under the auspices of the U.S. Department of Energy by

the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.



Introduction
Pyroelectric detectors are very sensitive thermometers that can
detect a temperature change of 1 pdeg.] and are widely used in

infrared measurements. Although they are seldom used in x-ray

applications, pyroelectric detectors appear to be very promising for
intense pulsed x-ray measurements and can be used as fast x-ray

pyrometers.

I. Interesting Characteristics of Pyroelectric Detectors

The most 1nteresting characteristics of the pyroelectric detector
for x-ray application 1s perhaps its flat spectral response to x-rays.
The spectral response is expected to be inherently flat inasmuch as the
x-rays are totally absorbed in the pyroelectric crystal and are converted
into heat. Since the pyroelectric detector can be made fast, being
ultimately limited by the phonon vibration rate of the crystal lattice
that is of the order of 1 p1cosecond.z it can be used as a fast
calorimeter. A fast calorimeter is valuable because a single detector
can measure the total output power from a pulsed x-ray source. i

Another interesting characteristic of the pyroelectric detector is
that it is a passive device; that is, no bias voltage is required. This

simplifies experimental setup and can be important in some applications.

II. Impulse Response

The pyroelectric phenomenum is based on the change of the
spontaneous polarization of a ferroelectric crystal due to the change Ef
temperature upon absorption of heat or radiation. Thus, the pyroelectric

displacement current is proportional to the rate of change of the crystal
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temperature. This often leads to the confusion whether the response|of
the detector is the derivative of the input pulse or not. To clarify the
situation, let's consider a square input pulse. For an adiabatic

detector, of which the thermal relaxation time is much longer than the

duration of the input pulse, the rate of change of the crystal
temperature is a constant, namely the crystal temperature keeps rising at
the same rate during the input pulse. Thus, the p&roelectric current is
a constant resulting in a square output voltage (not the derivative) on
the 1oad. Naturally, if either the thermal relaxation time is not mich
longer or the RC time constant of the associated electric circuit is not
much shorter than the input pulse, the output pulse will be affected
accordingly.

We have been testing LiTa03. Sr.sBa.sszo6 (SBN) and
L1Nb03 detectors at the Nova Laser Facility and at the Zapp Z-pinch
machine of our Laboratory. LiNbO3 has a high Curie temperature
(1210°C), SBN has a large pyroelectric coefficient
(6.5 x 1078 Cout em~2 °K']). while L1Ta03 is commonly used. The
response of a L1Ta03 detector to low energy x-rays from a Nova target
is shown in Fig. 1. A 0.35 uym, 1.6 KJ and 1 ns Nova beam was focused
015

onto a gold target at 2 x 1 wlcmz, and the x-rays were filtered

with a2 0.39 um A1 filter. The detector is 1 cm x 1 cm x 50 pym and

placed at 440 cm from the target. Clearly, pyroelectric detectors are
sensitive enough for this type of application. Fig. 2 shows the response
of a L1Ta03 detector to a 100 ns x-ray pulse from the Zapp Z-pinch
machine. The detector is 1 mm in diameter and was placed behind a

0.39 um Al filter at 40 cm from the plasma pinch. The pulse shape is

close to that of an x-ray diode, indicating a good response for such'a

relatively long pulse.



III. Spectral Responsee
As mentioned earlier, the spectral response of the pyroelectric
detectors ought to be inherently flat, so long as the x-rays are totally

absorbed and converted into heat. Even though there is no evidence

against this assertion, it is important to prove it experimentally; and
in particular, to calibrate the sensitivity of the detector.

As a first step toward this goal, we have correlated the LiTaO3
signals to the absolutely-calibrated broadband low energy x-ray !
spectrometer "Dante," a 15-channel, filtered x-ray diode system. The i
procedure is shown in Fig. 3(a) through Fig. 3(d). Fig. 3(a) shows the
measured x-ray spectrum from a Nova target, Fig. 3(b) is the transmissﬂon
of a 0.39 ym Al filter. Multiplying Fig. 3(a) and Fig. 3(b) gives the :
spectrum incident on the LiTaO3 detector. Integrating Fig. 3(c) gives
Fig. 3(d) which should correlate linearly with the LiTaO3 signal. The
result of the correlation from five Nova target shots is plotted in
Fig. 4. It shows that the spectral response of the x-ray pyrometer is
indeed flat above ~400 eV, where 90% of the Dante signal is contained.i
g

As a next step, we are planning to calibrate the detectors correspondi

to the filter-mirror channels of the Dante system.
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Figure Captions

1. A typical impulse response of LiTaO3 to Tow energy x-rays from [the

Nova target.

2. A typical x-ray pulse from a Z-pinch plasma observed with a L11a03

detector.

3. The procedure of correlating the measured x-ray spectrum to thg

pyroelectric signal. (See text for details)

4. Correlating the measured x-ray spectra to the pyroelectric sigJals.
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Impulse response of LiTaO, to low energy
x-rays from Nova target |

1 V/div.

1 | | I |

Fiducial

X-ray pyrometer
signal

20-00-0486-1784

1 ns/div.

Fig. 1



Impulse response of LiTaO5 to low energy x-rays
from a Z-pinch machine
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Procedure for integrating transmitted x-ray spectrum ©

Measured Dante spectrum 0.39 um Al filter
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Correlating pyrometer signals and Dante signals
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